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ON THE STABILITY OF A TIME

DEPENDENT BOUNDARY LAYER.

S. R. Otto*

ICASE, Mailstop 132c, NASA Langley RC,

Hampton, VA 23681-0001, USA.

ABSTRACT

The aim of this article is to determine the stability characteristics of a Rayleigh

layer, which is known to occur when the fluid above a flat plate has a velocity im-

parted to it (parallel to the plate). This situation is intrinsically unsteady, however

as a first approximation we consider the instantaneous stability of the flow. The

Orr-Sommerfeld equation is found to govern fixed downstream wavelength linear per-

turbations to the basic flow profile. By the solution of this equation we can determine

the Reynolds numbers at which the flow is neutrally stable; this quasi-steady approach

is only formally applicable for infinite Reynolds numbers. We shall consider the large

Reynolds number limit of the original problem and use a three deck mentality to de-

termine the form of the modes. The results of the two calculations are compared, and

the linear large Reynolds number analysis is extended to consider the effect of weak

nonlinearity in order to determine whether the system is sub or super critical.

* Research was supported by the National Aeron.uticb and Space Administration under NASA contract

No. NASI-19480 while the author was in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681
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§1 Introduction

The main thrust of boundary layer stability calculations have involved spatially

evolving problems. Relatively little work has gone into the stability of temporally

developing layers, one such situation is the topic of this paper, that of an impulsive

flow over a flat plate.

The calculation to determine the linear stability of the system considered here is

initially attempted using a quasi-steady approach where the flow is frozen at a certain

time. This yields an Orr-Sommerfeld equation, the solutions of which were discussed

for a variety of flows by Tollmien (1929) and Schlichting (1933), using homogeneous

assumptions in the temporal and downstream coordinates. Unfortunately the true

system governing what we shall refer to as Tollmien-Schlichting waves is not uniform

for a general boundary layer. An attempt to remedy this deficiency was proposed for

the Taylor-G6rtler problem by Smith (1955). These ideas were extended by Bouthier

(1973) and Gaster (1974), where extra terms were added to appreciate for the boundary

layer's growth; although it was noted by Gaster that this only amounted to a successive

approximation technique. It was in the work of Smith (1979 a) that a more formal

asymptotic treatment of the problem was proffered for large Reynolds numbers. Smith

used a triple deck structure to describe the linear development of fixed frequency

Tollmien-Schlichting waves within a growing boundary layer, specifically a Blasius

layer. It was found that the boundary layer growth altered the higher order terms in

the expansions of various wave characteristics within this structure. The inclusion of

these terms may be stabilising or destabilising depending on which quantity is taken

to be representative of the perturbations intensity.

Some studies have been made of the stability characteristics of unsteady bound-

ary layers, although most of the cases have involved temporal periodicity. In these

problems either a quasi-steady approach or Floquet theory can be used. In Kerczek

& Davis (1974) the linear stability of a Stokes layer on a flat plate is discussed, ifi this

problem, waves that develop quickly compared to the temporal scale 3f the basic state

are considered, as is the case in Cowley (1986). In Hall (1975) a study was made of

unsteady flows about cylinders, and in Seminara & Hall (1976) the Taylor problem is

considered where the inner cylinder is taken to oscillate periodically with time. The

work of Di Prima & Stuart (1975) regards the Taylor problem for eccentric cylinders

(which corresponds to a journal bearing). In Otto (1993) fhe 4tability of a boundary
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layer at an infinite cylinder is discussed. The cylinder starts to spin up and vortices

are generated by an axisymmetric element of wall roughness; these may lead to some

kind of transition. In Duck (1990) the unsteady triple deck equations were solved for

the flow over a small hump on a flat plate.

In the current problem the basic state depends on the normal and teml)oral coor-

dinates, so it is natural to solve an unsteady problem. This situation is fully parallel

so there is no need to make any assuml)tions about the spatial evolution of the basic

state. After a time to, we may define the boundary layer Reynolds numlber as,

I L"U (, vto) 0, t
Ro= E%(t) _UtI

based on the viscous layer's thickness. The velocity imparted to the fluid is U.,
and its kinematic viscosity is v. In the viscous layer (which may be shown to have

thickness (vt) 2 ), the basic state is found to be similar in time and is given by an error

function. This is accreditable to the large Reynolds number assumption; at finite

Reynolds numbers the unsteady equations need to be solved. We wish to consider the

susceptibility of this profile to Orr-Sommerfeld modes that evolve on short temporal

and spatial scales. As mentioned previously the approximation is made that we shall

'freeze' the basic profile. In an infinite Reynolds number flow this is formally correct

as there is no way information can propagate; but in the Orr-Sommerfeld method

the Reynolds number is retained as a finite parameter. In this paper we do not

wish to discuss the legitimacy of the Orr-Sommerfeld approach, it is just used as a

first approximation to the solution of the linear stability problem at finite Reynolds

number. For each time to beyond a certain point (this corresponds to Reynolds number

Ro), this problem may be solved to obtain a real wavenumber and phase speed such

that the wave is neutral. Above this critical Reynolds number there are two neutral

values, and as the Reynolds number increases still further the behaviour of the wave

having the smaller wavelength is governed by a five deck structure, the critical layer

becomes distinct from the wall layer, due to the size of the phase speed. Our interest

is confined to the lower branch where the structure may be described using three

decks. An ample description of this structure can be found in Stewartson (1974). The

bulk of the boundary layer is referred to as the main deck, which at leading order is

inviscid and linear. In the proximity of the wall there is a fully viscous layer, this

region contains the critical layer of classical Orr-Sommerfeld theory. Finally there
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is an upper deck which is external to the conventional boundary layer and enables

matching with the outer potential flow solution. A multiple scales technique is used

to resolve the growth of the boundary layer with time.

The temporal growth of the layer produces corrections to the eigenproblenis for

the wavenumbers and phase speeds at a higher order. The triple deck solutions may

be compared with the Orr-Sommerfeld calculation in the regime of common validity,

that is where Ro0 >> 1. In fact the corrections caused by the growth of the layer to

the 'steady' triple deck scenario occur in the third order equations, one order earlier

than those in Smith (1979 a). This is due to the different temporal and spatial scales

over which Tollmien-Schlichting waves develop.

The results of this calculation may be viewed in another sense. For a perturbation

wavenumber a, at each time to we have a frequency Q. When the imaginary part of Q

becomes zero, the wave is instantaneously neutral. In the neighbourhood of this neutral

time we may develop a weakly nonlinear theory. A Stuart-Watson amplitude equation

can be derived, and using this we may determine whether the perturbations are suil)

or super-critical, that is whether the nonlinearity has a destabilising or stabilising

effect on the situation. We shall also consider the interplay between the unsteady and

nonlinear effects, as was discussed for the Blasius problem by Smith (1979 b) and Hall

& Smith (1984).

The procedure adopted in the remainder of this paper is as follows, in section 2

the basic flow is derived and the quasi-steady problem is formulated. In section 3 the

linear triple deck problem is formulated and solved. In section 4 the weakly nonlinear

problem is derived and the nonlinear amplitude equation is given. Section 5 contains

details of the numerical solution of the linear problem. Section 6 includes discussion

of the effect of considering certain small but finite disturbances, and in section 7 some

brief conclusions are drawn.

§2 Derivation of the basic flow and the formulation of the quasi-steady problem

The problem is non-dimensionalised in the usual way and the unsteady three di-

mensional Navier-Stokes equations in cartesian coordinates become (with the temporal

scaling t - L/U,, for the Orr-Sommerfeld modes, where L is a typical lengthscale, and
t ,L 2 /1 for the basic state),

Ou Ou au Nu ap 1
+u-+V-+w- =0 + -V U1

Sax Oy 1x Re
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'Ov Ov Ov Ov 01) 1 V2V

Ow Ow Ow Ow Op ++ U -+W -= z+Ev
Ot OX ay O z R,

Ou Ov Owo-7 + - + 0-. ,
Oa y O9Z

where Re is the Reynolds number defined as U..L/v, and V 2 is the Laplacian operator

in cartesian coordinates. The choice of the lengthscale L is discussed in section 5, but

it shall be taken to be the displacement thickness of the layer, as in Jordinson (1970).

In this section disturbances shall be considered to be two dimensional to facilitate

comparison between this work and that of Smith (1579 a), to this end it is assumed

that O/Oz - 0 and w - 0.

We require that the unsteady terms and viscous terms balance in the viscous layer,

this implies that this layer is of thickness (vt)L. In the non-dinmensional coordinates

this corresponds to t ½. Thus we introduce a boundary layer similarity variable i/ given

by
Y (2.1)

-2t½ "
There is no flow in the normal direction, as can be seen from the equation of continuity

at leading order. Hence the basic state is governed by

,0 2 U B O9UB
- + 21? =0,

along with the boundary conditions

UB = 0 at 71 = 0, and ?LB -- * 1 as 7 -o.

The solution of his system is given by

UB = -L e-2dq,

0

this is an error function.

Now in the context of an Orr-Sommerfeld equation we consider the instant sta-
I

bility of this profile, hence (2.1) now becomes 1 = y/2t , where to is a constant. We

suppose that any perturbation to the flow is independent of the order one temporal

scale.
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The perturbations are considered to be travelling waves which evolve oil the scale

L, thus the disturbance is proportional to exp (i0 (x - ct)). The disturbance is taken

to be infinitesimal so that the resulting analysis is linear. As the perturbation is two

dimensional, a streamfunction formulation can be exploited, such that

ay ' ax

It should be noted that terms proportional 9iP/&t = 0 have been ignored, so that the

equation may be solved as an ordinary differential equation. The governing equation

is the conventional Orr-Sommerfeld equation namely,

) (a 2  _o 92 UB a4~2~Ž~4
(UB - C) ( 2 ) 0-2 1 (04 202 y2 +94)1. (2.2)19y 2 y2 -iOR, O y4 2

The boundary conditions imposed are those of no-slip at the wall, and the decay of

the disturbance as y -- oo, this implies the wave is confined to the boundary layer.

This eigenvalue problem can be solved numerically employing the method discussed in

Malik, Chuang,& Hussaini (1982). The method uses a two-point fourth order compact

finite difference scheme based on a Euler-Maclaurin method. A stretched grid was used

so that resolution could be retained without using a prohibitive number of points. The

c-1 -ulations were checked by finding the eigenvalues of the adjoint system to (2.2). The

critical values were found to be

Rec = 2968.4, Q = 0.13340, 0• = 0.4255, c = 0.3135,

where Qi = Oc. This point represents the smallest value of the boundary layer Reynolds

number at which the flow situation is linearly unstable to travelling waves of the type

considered herein. Plots of 0 and c against Re are given in figures 1 and 2 respectively.

These calculation were affected for to = 1/4, so that y = r/ at that instance.
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Figure 1:Streamwise wavenumber versus Re, Orr-Sommerfeld calculation
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Figure 2:Phase speed versus Re, Orr-Sommerfeld calculation

§3 Formulation and solution of the triple deck problem in the linear regime

In this section the structure of the the linear disturbances is described using triple

deck theory. As mentioned previously Re is assumed to be large; and e = Re < 1 is

introduced. In classical Orr-Sommerfeld theory the typical wavelength of the neutrally

stable modes increases proportionally to Re as R >» 1, see Stuart (1963). Stuart

confirms this asymptotic property with a Reynolds number based on boundary layer

thickness. Three distinct regions are considered, namely the upper, main and lower
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decks, scaled normally on F , ef, and c5 respectively. Further temporal and spatial

variables are introduced, that is T and X, given by, T = f- 2 t and X = f-3.. The

solutions are considered .n the three decks in terms of expansions involving powers of

and In e, as in Stewartson (1974). The disturbance is now considered to be proportional

to

E = exp (iOX - i I (q)dq

TO

The disturbance is taken to have slowly varying frequency and constant wavenuniber,

so that 0 and fQ are given by

8 = 01 + A0 + f2 InCeO3L + C203 + , (3.1a)

and
Q(t) = pl(t) + 4f 2 (t) + C2 InCEQ3L(t) + E2 Q3 (t) +'. (3.1b)

A multiple scales form for the temporal derivative is introduced,

•-2 a(3.2)-•~ ~ "- -- O T" '32

Notice, that to determine the effects of unsteadiness the expansions need only go as

far as the fourth order terms not the fifth order terms as in Smith (1979 a), this occurs

due to the difference in scalings associated with the temporal and spatial variables.

§3.1 The Main Deck

The transverse coordinate in this layer is Y = 0(1), where Y = f-4y. The main

deck corresponds to the conventional R. 2 boundary layer. The basic flow in the layer

is given by the error function as shown in section 2. It should be noted that there is

no normal component of this velocity, as can be seen by considering continuity in this

layer in the absence of any disturbance. It may be shown that the basic flow has the

properties that,

UB(t,Y) --+ A(t)Y + A3 (t)Y 3 + O(Y5 ) as Y --+0, (3.3a)

UB(t,Y) -+ 1 as Y -- co, (3.3b)
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where it is known that A (t) = At-½ , with A 1/v/-. The perturbation to the basic

state in this layer takes the form,

It = I + fU2 + f2 11EU3L + f2u 3 + ..- E,

v = [ct' + ef 2 V2 +f lIn V3L + e 3 3+... E,

p = [emp + C2 P2 + F3 lneP3L + e3 p3 + ... ] E.

Notice that the logarithmic terms (cliaracterised by subscript L), occur at one order

higher than in the corresponding expansions of Smith (1979 a). This is due to the

form of uB as Y - 0 given by (3.3 a). This form of the disturbance is now substituted

into the governing equations, and nonlinear terms are neglected. The operators . 1 ,

anld A12 are introduced, and are given by

M, (u, V) = iO U + OY M2 (u, U) = iBi U9u + TY

where these are identical to those used in Smith (1979 a).

The equations in this layer are conceptually identical to those of Smith (1979 a),

except the order at which the logarithmic terms occur. In this deck Lh-re is no effect

from the multiple scales form to the order considered, so it is sufficient just to quote

the equations governing the logarithmic terms,

M1 (U3L, V3L) + i03LUI = 0, M 2 (113L, V3L) + UBi03LUI = 0, 0 = ....

The boundary conditions for the disturbances in this layer are given by matching with

the lower and upper decks, the solutions for this layer are considered in section 3.4.

§3.2 The Lower Deck

In this deck the order one variable ý is introduced, defined by .- = y-5y. The lower

deck contains the wall layer and critical layer of classical Orr-Sor-imerfeld theory. The

wave in this deck expands as

u = [U1 + EU 2 + e2 InEU 3L + f 2 U 3 +...] E,

v =[e2l +eaV +E' In 'FV3L + 43 +.] E,

p = [ePI + e 2P 2 + e3 In eP 3L + 3 P3... E.

The basic flow is given by uitB - eP A(t) + e3ý3 A3 (t) + as can be seen from the

form of (3.3 a). From the normal momentum equation it may be shown that the
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P,'s (j = 1,2, 3) are independent of Y, but L" and V' are functions of ý and t. Again

following Smith (1979 a) the operators L1 and L2 are introduced, and are given by

Ov 0& u
Ll(u,v) = 16ju + (--V L2 (U, V,pý= i1(AýGO - j) u + Av + i'9P - o ---

Again it is sufficient only to quote those equations that differ from those of Smith

(1979 a),

L, (U3L, V3L) + 2 3 LUL1 = 0,

L2 (U3L, V3L,P3L) - IQ3LUI + \,Oi03L U1 + i9 3LP1 = 0,

L2 (U3 , V3, P 3 ) - i (Q 2U2 + Q3 U1 ) + Afi (02 U2 + 03 U1) + i (02 P2 + 03P1 )

+ iA3 1U1 3 + 3ý 2 A3 V1 + - = 0.

The boundary conditions in this layer are those of no-slip at the wall and matching

with the main deck.

§3.3 The Upper deck

In this third deck a coordinate p is introduced, defined by y = ea3, where 0 is an

order one quantity, and the disturbance takes the form

U = [eii, + E2 i2 + E3 In Ci!L + E3 i! + ... ] E,

V = [Cf1 + C2 I2 + C3 In ff)3L +f •iY +.. E,

p = [,Ef) + E2 P2 
+ E3 In E L + E3 P3 +...] E.

Here the basic velocity is almost the uniform flow solution that is

UB = 1 + ( 3 ).

In this layer all the flow quantities are functions of the slow time scale t and 7. The

operator D is introduced, defined by

D(p) = -2

After some algebraic manipulation to remove the velocity components the governing

equations for the p:essure are obtained as,

"D (P5i) == 0, D (P52) = 20,02PI,

2P-"D(P3L) = 20,9 3L01, D (p3) = 201 (03P1 + 022) + 0p2.
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The boundary conditions are those of matching with the main deck as p - 0 and

the requirement that the solution remains bounded as 9 -- oc. Having set up these

equations they are now solved iii each layer and the eigen problenis are derived. It is

worth stressing at this point that there is no effect in thc t-pptu deck equations from

the unsteadiness (to the order considered). The unsteady derivatives are of a higher

order unlike the spatial derivative which occur in the diffusive terms, from

(a + -3 )2

§3.4 Solutions of the main deck equations

The solutions of the first order equations in the main deck can be shown to be

IUB
S= -iOIAjuB, I= A1l a Pi = Pi,

where P1 = P1 (t) and A, = A, (t) are unknown slowly varying amplitude functions.

The pressure in this deck will be matched with the pressure in the lower deck. Solutions

here are the same as those given in Smith (1979 a). The integrals Hi defined in Smith

k -,9 79 a) are functions of x and Y, whereas here they are functions of t and Y, also

obviously UB is the error function, rather than the solution to the Blasius equation.

The logarithmic solutions are given by,

U3L(A3L - A103L) OUBlt3 = 3L 01 ) Y a

V3L = -iOiA3LuB, P3L = P3L,

§3.5 Solutions in the lower deck

To determine the behaviour of U1 in this deck, we differentiate the leading order

equation of continuity with respect to the decks transverse coordinate, that is ý, and

eliminate V1 . It is required that the disturbance is bounded as y* --+ x, thus the

solution for U1 is found to be given by

Ujý = B1Ai

where

S= (~-: 7 )A0'
10



Ai(ý) is the Airy function and B, is an unknown function of t. Applying the no-slip

condition at • - 0 in the leading order equation, it is found that

B 1 Ai0A] = iOiP1 , (3.4)

where subscript 0 corresponds to evaluation at ý = -iQ 1  -1, and a prime

denotes differentiation with respect to ý. The matching condition on the leading order

disturbance as -- c (therefore as -* oo), is given by U, --+ AA1 , thus it is found

that

B,= AA 1 ,

where
(00

I = Ai (ýz) dý.

This yields the first relation between the pressure and the negative displacement, P1

and A 1 respectively, obtained by eliminating B 1 from the equation (3.4). Note that

these are effectively the classical critical layer equations, since, as noted previously on

the lower branch of the stability curve the critical layer coincides with the wall layer.

As can be seen from Smith (1979 a) similar techniques may be used to solve for the

higher order equations. The same solutions as Smith (1979 a) are obtained except the

unknown amplitudes are now functions of t, rather than x. The equation to be solved

at the next order is

a
3U2  WU2 _ _.(Q 2 1U10•3 •- Q2A- 3--- +i IA - + A-1O 02

which yields the solution

U2t = B2 Ai + 3 2011'BiAi"' + il 1B 1Ai A-3.

The function U3L satisfies

a 3 U 3 L OU3L • 2 _U1 Q 2o•3 i - Q3LA- o9• + iA (A- + G

which gives the solution,

1 2(03LQ2I
U3Lt=B 3 LAi + I0 3 LOi 1 BIAi"' + i- a BAi'Z-7.

11



At next order the function U3 satisfies

a3U3  W3 I WU2  . Oui

_ A- Q ,, A A Q3\ I• A -2 02 19U 2  03 alll

+ /+6

ZA0i (AO,

*3ýa . Ul

j=O

which yields the solution

W3 6
E O !iAi(') + B, f(ý),

i=0

where,
oAi a, a3 Ai (1O 7Ai 3&'Ai + Ai

f() =a- + 3 + a2  ±4 2-
6A3 i (_! 63Q

+i•/_ a(A -JJAid~d{) -6A 3 Q; JfAide,
T-0- 3 izdhe,) id•

where the limits of the integrations are ý to co. In this solution the terms included in

the /3 summation include those of Smith (1979 a) and the unsteady terms. The terms

included in the function f (ý) are those associated with A3 , that is the second order

mean flow quantity.

The /3's are given by,

02 ,
f3o = B 3 , /3# = il B 2 + a 12 B, - • ctBial + A-3BŽ,

A3 -15 a-OB, 2 At (002 +OsB)
0 2 = + aliBi - BI, 03a =-t B, + (02B +O0B,

/32= = 1 1 B 1- 1B~l+ala /35 --

4 (01 15A60

where -y has been introduced, and is given by

6 1 2 k fl A)

12



The terms ao, a1 , a2 and a3 are given by

A3  2 A3  
) 3A / 2 3

ao = -,-A I a, =-A-5 a, a3 =-Z
A A A0 1' A (\A81)Ak~

For brevity a&j and a 2 have been introduced, and are given by

(= -(O+I a 02\ • Q 0l and a2 = -30- "

Now applying no-slip conditions at the wall it is found that
2 02 • A"il•I

(0 1 P2 + 02 P) = A B2 Ai' + A - BA, Ai" + a IIB 1 Ai,"

A22 +OA2Q03L 3L B1AiI,
i(1 P3L +03LP)= Pi 3B3LAi' + ,BAi", + iA- 01 )

i(0 1P 3 +0 2 P2 +0 3P,) =AiZ / iAi('+') + AIB,--
i=0

Matching with the main deck yields

A(A 02 )B2r, - 2Ai - OqlBAio =A) A2 -Pli - --lA ,
0 ~19

03 LK+B~~i~ 2 0 3LOI= ( 3 LPI
BrL, + -Bj Ai• -ZiA-( fQ3L BjAio=+AL-P~i- -LA,

U 30, 01 0
6 o

6A 00 2Q, -- 02A +2A 03 ABC 0 + -02

Z iA 1- 01 01 02
=1 O

(3.6)

The integrals occurring in the expressions (3.6) are given by

fu- 2 (Y1)dYl, and f u 3 (YI) dYl,

where A is arbitrary and non-zero. The horizontal bar denotes that only the (Hadamard)

finite part is to be retained. We note that for small r7 the error function can be ap-

proximated by, A (q - q3/3 + n'/5), and hence f is given by

ý3 ~ 02
1 5A - 12 1 435- 9077

T2" 26 (30 - 10ý2+ 34) + 26130--10772+3174d77)

13



with a similar expression for i. In the numerical calculations the quantity H 2 • -H 1 -

i is found to be -0.29512(2t0), this is required in the second order eigenrelation given

by (3.8 b).

§3.6 The upper deck solutions and eigenrelations

The pressure equation in the upper deck yields the bounded solution

]) ~ e- O01 ,

where P1 = P• (t) is ain unknown amplitude function. Now matching with the main

deck as p -4 0 yields

P1 = Pi, 01P1 =P OAI (- i~jv),

where vl, denotes the values of v, (the main deck normal velocity) as the decks

transverse coordinate (Y) tends to infinity. This provides the leading order eigenvalue

problem
*02= AL.AA0i. (3.7)

This relationship determines the wavenumber in terms of the frequency and the skin

friction A. The higher order pressure functions may be determined, and are given by

P2 = (P2 - 2 P1 9) e -"',

P3L (L - 03LP1 ) e-'1,

2 2 '~-

To match with the main deck, the unknown functions must satisfy

P2 = P2 - I

iOj P, H2,, + 2i~j A - iO1A 2 = iA1 02 - i '2 - P,
01

P3L = P3L,

--01A3L = iA3LAI - ZA3L - 03LP161

P3 =A 3 +1O PH 3 . -01 (0IA 2 + 02 A,) Hj + 2Q, 1 A1 H4 •,

14



i(0 2P, + 01 P2 )H 2 . -2i03A 1 H 5  +iQ 1 P1 H 6 oo+ il, (A 2  02A 1 '\

1 .0P .0-A-)
+ i'R2A, i0IA3 ((Q1 -02) v2. + (Q'2 -03) V1.,) iP3 03 P .02z 01 01)

The higher order eigenrelations may now be obtained,

i)0D - R0 ioo - oo + 2iai, (3.8a)

DO3L - Q3z01 Ai0__D = 6 A3 iQ (3.8b)
.A~ A4

b03 - Q301AiOD -i(c.t., + c.t.>, + n.t.) (3.8c)

where D and b are given by,

rcco4. 2 / Qi2Aio)
D 1 + and =-3+ +

Ai' 3 3 r.A2

In (3.8) c.t, denotes the terms that arise in conventional analysis; these are exactly

the same as those occurring in the third order terms of Smith (1979 a), as the non-

parallelism has no effect at this order. These terms can be directly determined from

(3.15 b) of Smith (1979 a). The terms c.t. 3, are those associated with the second

order basic flow terms and n.t. are the terms that arise due to the t-derivatives (that

is unsteadiness of the modes). Discussion of the solution of these eigenrelations is

included in section 5.

§4 Nonlinear theory for larger disturbances

We start by setting up the nonlinear problem for an unsteady triple deck. As in

the linear problem the scalings x = e3X and t = e2T are introduced. In the Rayleigh

layer under considerittion at the time station t, the flow field in the absence of any

disturbance is given by

V =UB(t,Y)+ ...

where uB (t, Y) is given by the error function. It is also worth re-iterating at this

point that as Y -* 0,

UB(t,Y) --+ A(t)Y + A 3 (t)Y 3 +.
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where A (t) = (irt)-I.

The properties of the entire problem may now be determined by examining the

lower deck, the same transverse coordinate is used as in section 3.2, that is y = e:5,

where • = 0(1). In the lower deck the flow is taken to be of the form,

u= (eU(X,g,Z,T;t) ', 3V(X, , Z,T;t), EW(X, , Z,T;t) , 2P(X,Z,T;t)).

This flow includes both the basic flow and any disturbance quantity. The fact that

the pressure P is independent of ý is given by the wall normal momentum equation.

The govErning equations in the deck are now found to be

aU OU aU aU op a2U- + U- + V + w- - + -- (4.--a)

OW bOW vOW OW _OP a2W (.b
- + v - + - + w-- + (4-b)

OU OV OW
o- + -+ 0, (4.1c)

with boundary conditions

U=V=W=O at 0=0, (4.1d)

and,

U , AA(9 + A(X,Z,T)) as -- oo. (4.1e)

Here it is assumed that the spanwise component of the disturbance is confined to the

lower deck. From the upper deck equations we see that

vO2 02A
V•p=O, with Fp=P(X,Z,T) and 0-5 -- aaf X at y=0

where g is the transverse upper deck coordinate, and p is a function of X, Y, Z and

T, and is bounded as g --+ co. Now consider a small perturbation to the basic state

(U = Aý, V = W = P = A = 0) in the lower deck. The perturbation to this system is

taken to be of order h < 1. In Hall & Smith (1984) initially a bi-modal analysis was

considered and subsequently a multiple mode analysis, here a single mode is considered.

It is assumed that h is larger than any positive power of e so the governing equations

can be assumed to be given by (4.1) for all orders of h. In section 6, the problem

16



involved in making h -0e is discussed, where unsteady effects occur at the same order

as nionlinear effects. The flow is now perturbed and taken to be given by

U=APj+hU +h 2 U2 +h U3 +...

V=hV h 2V 2 + h 3 V 3 +...

W hW± + h 2W 2 + h3 W 3 +...

P =hP± + h2 p2 + h3 P3 +...

A =hA1 + h 2A 2 + h 3A 3 +...

S= hpi + h2p2 + h3 P3 +... ,

The disturbance is considered to be proportional to E and its integer multiples, where

E is given by

E - exp (i(0X +yZ- QT)),

0, -y and Q are real constants for neutral stability, and Z represents the spanwise
3

variation on the O(RI-e) scale. For any spanwise wavenumber -y a pair 0 and Q may

be determined using the first order eigenrelation given by linear theory. At this point

a new time coordinate is introduced, namely t defined by

T h -2t h•.

This necessitates the inclusion of further terms in the skin friction in the neighbourhood

of the neutral time to, as mentioned in Smith (1980); the correction to Smith (1979

b), so

t = to + h2 t, A = A + h2 A2 + O(h3 ), Q = Q, + h2 9 + O(h3),

where A2 = i(dA/dt)It=to. It is necessary to include the further terms in the Q form,

to satisfy the third order eigenrelation.

Now substitute the disturbance into the governing equations including the neces-

sary multiple scales approach for temporal derivatives. The equation of continuity at

successive powers of h becomes,

Li (UlVW)=0, L (U2, V2, W2) =0, L(U 3 ,V 3 ,W 3)=0.

The streamwise momentum equation at successive orders yields,

L 2 (U], V1,P 1 ) = 0,
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L2 (U2,V2,eP2) =, -u,-b + V,-Oul + w, oz /

L2 (U3, V3, P 3) = - OU1 aU V A2 - U1 OXT

U2 _ U V2aU 2 _ 9U1-vl-- -v 2 -- -w -- 2 --

The spanwise momentum equation become,

L3 (WI,PI) = 0,
awl _ awl _, awl

L3 (W2, P2) = U1 a--X-V- WjY -a

OW 2  OW 1  OW2  OW2aw aow az wz

The operators L1, L 2 and L3 are defined by,

OU Ov ow
LI (U, V, W) = 57X- + -ffV + -f,

L2 (U, V, P) = OU + AY--U +AV+ xOP a02U

OT OX OPX 0 yW

ow ow op o2wL3 (W, P) = - + AY _ - Z O 2

The boundary conditions at successive orders are given by

U, = V. = W, = 0 at = 0 (i = 1,2,3),

U, AA, (X, Z, T) as --+ 0,

U2 - AA2 (X, Z, T) as 9--+00,

U3 - AA 3 (X,Z,T) + A2 A, (X,Z,T) as -4 oo,

It is worth noting another significant discrepancy between this work and that con-

sidering a spatially growing boundary layer, that is the slow time derivative does not

come into the upper deck governing equations, as was noted in the linear section. Now

consider U1 to be wavelike proportional to E and its conjugate denoted by E. The

first order disturbance field is now given by

U-_ =u (•,i')E•c.c., =, =v, (g,•t)E+c.c., W1  f w 1 (9,•t)E+c.c.,

18



P = A (t)E + .c., P, =P, ) A, 1A 1 (,)E+c.c.,

where c.c. denotes complex conjugate and the disturbance quantities with tildes are

independent of X, Z, and T. By combining the first order equations the two governing

equations are obtained

o~-- A- ý- =~ o{ Awl' (4.2a, b)1ý A2y OA U1  au1 _ Ay 1 ,

where

At this point it is advantageous to introduce a further disturbance quantity that is

Xij. The equations (4.2 a) and (4.2 b) may be manipulated and it is found that Xji

satisfies
X -0, (4.3a)

where
Xii = izU1 + i7 W1 . (4.3b)

The solution of (4.3 a) together with a bounded condition at infinity yields,

XiI = B (t) Ai(ý). (4.3c)

The three dimensional eigenrelation may now be obtained, namely

A 2Ai' (ýo) = (iOA)) (2 + 72) , (4.4a)

as given in Hall & Smith (1984), where

and = i Ai(q)dq. (4.4b, c)

fo

The neutral solution of the eigenvalue problem is given by

ý0 = -2.298is.

In this relationship 0 is real and (4.4 a) yields

31 (02 + 72) =1.001A ,

and,

Q, = 2.29901A 4 .

Thus for a particular spanwise wavenumber 7, a pair 0 and f/1 maybe obtained such

that neutrality is assured, a plot of the variation with 7 of 0 and Q1 is given in figure

3.
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Figure 3: Variation of 0 and Q, with y.

The solution of the second order problem is now considered, the disturbance

quantities now contain second harmonic terms, the disturbance is taken to be of the

form

U2 = EU21 + E-'U2) + E2U2 2 + E2-2) + U20,

with similar expansions for V2 , W2 , P 2, P2 and A2 . The terms proportional to E 2 are

considered and it is found that (U5'22, f7 2, w22, satisfies the system
- syste

2i6U22 + ± + 2ityW 2 2 0,

a22i2 OCT ± V &CT

-2i*U22 + ,A2izU 22 + AV22 + 2ioP22 - o z• v -
82 W2 ZOU W'_V u

-2iQW 2 2 + A2i6W22 + 2iyP 22  - lO2 Y

along with boundary conditions

(22 = f2 2 = f, = 0 at 0=0,

T22 --+ AA22  as 0- .
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Again at this point it is advantageous to re-introduce kij, this time X22 defined by

X22 = 2i0'U22 + 2i-YW 2 2 ,

so the system becomes,

a2 X22 92 2 _ xll + V, 92 •I

The solution of which necessitates the introduction of ý, given by = 2- ½ . Note that

it is not necessary to solve the equation to determine (0 21, V21, 1a21 1,P21), as it can

seen that the governing equations for these quantities are the homogeneous equations

(4.2); the solution is a linear multiple of the first order solution. Now finally at this

order the mean adjustment components are determined by

a20

AVo - 82-•°_ v1 oo'• - v1(c)-~. - • (w•)u1 - wiu,))

02 WN - = (- 01 ) )I_ _ _ -(CV1u

with boundary conditions

0 2 0 =o 2 0 = W2 0 = 0 at =O0.

By the usual substitution, that is X2o = iOU2o + i-yW 2o, it is shown that

aV20

A&X20 =- /f/1 0 2 X11 A 2 V _211 9

AV 1  '5-1+I9L1
at399 a2 ;AI ).

Finally the third order equations are considered and again by elementary analysis it is

known that the third order quantities contain terms proportional to E 3 , E', E,, E0 ,
E1, P2 and E 3 , however, determination of the functions associated with E is sufficient
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to give the required amplitude eqaation. The functions (Cr3 1 , f31 I 3, W 3 1 ) are givell

by the solution of the system

&3 U31 u31 1._, A201 00 Q1 '9,

-1 -W + 2A +- + 4o

10• (OPT ( + A---A O- ,)

' zxl'( 0(22 +2.1

-C+ f + '9 2)+ 0OCT'

+w-y (2bo2 u2 W(C) rW22 0 1 + on 2i 0iW

a2 -'* 1 awl i 2A-

0SX31~~ ~~ 313 +AI•, +A),(•)0X1i2_Oo• 2 AU o•OT AS Sa- +A-Xg O)

[ ,•---___~ ___~ OW1 c 0•____W20
0+ IA2•¼2TIC 0221c &2 0f 2+AV•0

1_ O()a 2 W 2 0  ____ aw

+ - (fV22fVj( + f*20141),

with boundary conditions

0 3 1 fV3 1= W3 1 =0 at 0=,

031 - -AA31 + A2 ,, as -o.

We make the substitution X31 i003, + i7WV3 , and it is found that

0 3 X31 _ !OX31 2 02 XIIi AI fl Xii - 2 aX11
a_ = - -+AS __I + -_ Z 2- 3

___2 '2 x~ / 92 X22 av'2.ki
___I - z3V 2 + ''2

We require a solvability condition for this equation (with the upper deck terms), which

yields dB- = a lB , + ,'2 B , I B ,1, (4.5)

dT
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where B 1 is the lower deck amplitude function, and where a2 is an integral given

in the appendix (equation (A.1)). Note that al may be thought of as a frequency

perturbation, and if al = iM, we may determine Q from the eigenrelation (4.4 a).

along with (4.4 b,c). If Q is replaced Q + h2+ and A by A + 2•A (Q Q2 and A z--A 2 ).

we obtain the relationship,

.•of 0 A• + •() (9 •2ol A 5 ('0) (02 + 12)I
-- A i ( 3 (4.6)Q• A i -O ) -3 ( 0 2 + 1 2 ) _2 -\

Note that it is not necessary to calculate the value of 72 as it has the same value

as in Hall & Smith (1984), where it is been assuined that A is unity. The velocity

field has been normalised so that 1. These results are for a siglt mode.

whereas Hall & Smith (1984) considered two modes, note that the value of a ,- (which

corresponds to a2, here) is independent of the second slpanwise wavenuinlber thus,

4.2 3.9 3.6 3.3 3.0 2.7 2.4 2.1 1.8 1.3 1.2

L72 -0.0039 -0.0049 -0.0062 -0.0081 -0.0107 -0.0147 -0.0214 -n.0314 -0.0313 -0.0919 -0.2230

Table 1, -y against o2,, as in Hall & Smith (1984).

Note that = ql (t-t,,) and A A' (to) (t-t,,), hence the relationship (4.6)

becomes
qA' (to) (1.46912A()

A (to) (2.29720L (02 + ) + 2 .266128)

where a superscript prime represents differentiation with respect to t. It is noted that

A' (to) < 0, thus Qi > 0 after the neutral time t = t,,, as is expected from linear theory.

Note that by considering smaller disturbances unsteady effects may be incurred.

It is assumed that h is small, but not so small that the leading order effects described,

in this Fcction are changed. In fact the calculations included in this section are appro-
1 1

priate to 1 >> h >> Re-16. The case where h - Re 16 is now considered, note that it

is simila, to the case discussed in Hall & Smith (1984), for the spatial problem. It is
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taken that h = HR' r, with H of order one, and corresponding to a disturbance size
3

of 6 = HRe r, and it is found that the nonlinear amplitude equation is given by,

dBi 4 2dT - (-i t1 + i + TH-4) BI + 0 2BIBiI2 . (4.7)

The coefficients in this equations remain the same as in (4.5) so no further numerical

work is needed, the discussion of the solutions of this equation are included in section

6.

§5 The neutral stability characteristics

§5.1 Quasi steady flow stability in the triple deck (linear case)

Here we find the wave characteristics that can be determined from the eigenre-

lations (3.7 & 8). It should be stressed at this point that triple deck theory is only

applicable for R, >> 1, however we can compute the neutral wavenumber 0n and

compare it with the Orr-Sommerfeld predictions. The eigenrelations (3.7,8a & b) are

unaffected by the boundary layer's growth, so the condition of neutrality is realised

by ensuring that Q1, Q2 and Q3L are real.

To ensure that Q, and 01 are real we calculate the value of CO (defined in section

3.5), required to make the quantity Ai0/(i K)(= .2 - 1.00065) real. This occurs when
I = ^

-0 -2.298i* = -1 0 , which yields

3 3 ^5 3

At this point we recall that, but 01 is a constant so we can think of this

expression as defining the neutral time,

8
tn -61 5

ir

After this time modes will exhibit temporal amplification, and the weakly nonlinear

analysis described herein will come into effect as the mode attains a finite amplitude.

It appears that the higher wavenumber modes will start to grow earliest, of course this

can be seen from figure 1. These results may also be interpreted in terms of the local

boundary layer Reynolds number, defined by R6 . = 2/v#(tRe)½, where 2vt/v/ý7 is

the displacement thickness. As noted in section 2, the Orr-Sommerfeld calculations
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are affected for t = 1/4 so that the value for the displacement thickness is 1/2v/i. We

can express the neutrally stable wavenumnber in terms of this Reynolds number as

0" = ;'R -R- R 6. 4

7r 4

We now proceed to the second order eigenrelations, and note that

4i 2QAio

3 10-I

We require that Q2 and 02 are real, and thus we find that

02 = 1. 5 5 7 2 1t-4.

In order to determine the logarithmic wave characteristics we note that A3  -1/(12=,/-7t),

and we find that

03L = -0.56748t-g.

Subsequent terms in the expansion are effected by the growth of the layer, hence we

defer their discussion to the next section. We may combine the expressions for 01, 02

and 03L in order to predict the neutral wavenumber 0n in terms of the local boundary

layer Reynolds number. We find that

On = 1.0789R6-! (1 + 3.37079R 6-.o - 5.70354R- nR 6 . ±..

this value is compared with the neutral value found from Orr-Sommerfeld theory, the

results are displayed in figure 4. In order to predict the upper branch we would need

to consider a more complicated structure in which the critical layer is distinct from

the viscous wall layer.
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Figure 4: Comparison of neutral wavelength, Orr-Sommerfeld and triple deck

The agreement is reasonable, but it should be noted that analysis relies on different

powers of the Reynolds numbers being distinct, however at the values of R 6. displayed
1 1

in figure 4, R-.*2 In Rb. and R;.4 are not totally distinct. However, the triple deck

theory does appear to capture the lower branches characteristics.

§5.2 Unsteady effects on triple deck stability

In this section we discuss the effects that the boundary layer's growth has on

the stability of the Tollmien-Schlichting waves. As has been mentioned several times

earlier, the evolution of the layer changes the characteristics at one order higher than

in the spatial case of Smith (1979 a), thus it is perhaps even more crucial in these

temporal cases that the layers evolution is included in the analysis. This is to be

expected, since during one spatial wavelength of the wave the boundary does not

evolve (spatially) as much as it would during one period (temporally). The leading

order effect of the boundary layer's growth occurs in the eigenrelation (3.8 c), which

determines Q3 and 63.

We consider the total temporal derivative of a flow quantity 1, and define its

growth rate as,
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We require that the quantity a is purely imaginary, which for a problem which does not

exhibit any temporal changes translates to ensuring that the Q's are real. However,

we know that 49 -4 ,t + ,E-2 r, so that

a [-2  A -i2-E21n L --3 +iL 3  +-.-

Hence in order for a to remain totally imaginary (to the order considered), we require

Imag(QŽ3) = -Real

Using this condition together with eigenrelation (3.8 c), we can determine 03 and

[Real (Q 3) - Imag( -)].

It is not clear as to which quantity should be used in order to represent the

disturbance's growth. In Smith (1979 a) the wall pressure was used, and the results

which were obtained allowed enhanced agreement with the experiments of Ross et

al (1970). Smith noted that this implied that the boundary layer's growth had a

stabilising effect, however if other quantities were chosen to represent the disturbance,

the concluions could be the opposite. In Gaster (1974) and Eagles & Weissman

(1975), it was noted that the difficulty is in defining the instability in some absolute

sense, however this method should allow good agreement with a particular experiment

(in which the disturbance is measured using a certain quantity). We are not aware of

any experimental data concerning the susceptibility of a Rayleigh layer to Tollmien-

Schlichting waves. If, for example we take the wall layer normal velocity (V1 ) to be

representative of the disturbance, then the layers growth is seen to have a destablising

effect.

The reason for the enhanced agreement with experiment seen in Smith (1979 a),
3

is likely to have its origin in the size of the correction, it is now of order R. 8 which

is larger than that of Bouthipr (1973) and Gaster's (1974) (order R.2) successive

approximation technique. As mentioned previously our correction is of order R.-4

which represents an even larger change, so we expect even better agreement between

the theory and experimental results.
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§6 Discussion of the weakly nonlinear stability.

The relationship between the equilibrium amplitude solutions of (4.5) and those

of the unsteady flow amplitude solutions of (4.7) is now considered. The latter as

previously stated corresponds to a disturbance of size h - Re ". The former is for

larger disturbances where h > Re r. Thus we are required to solve,

dB 1BBB2 ,dB iB + 2BIB(6.1)di

and,
dB t, + H-4T B + a 2 BIBI2 , (6.2)

where B = B, is the lower deck amplitude function as in (4.3 c). The first equation

(6.1) has the stable equilibrium solution,

1B12 = 1 ', (6.3)
a2r

which bifurcates supercritically at !i = 0 from the zero solution for increasing Reynolds

number, where a2r is always less than zero as shown in table 1. Increasing the Reynolds

number corresponds to progressing through time, thus increasing to. The zero solution

is unstable beyond Q equals zero, so any perturbation to this ten-ds to the solution (6.3).

Now note that sufficiently close to the neutral time ti, (specifically within h - R- ),

the appropriate equation is (6.2). Drawing on the conclusions of Hall & Smith (1984)

we let B = pexp (iq$), where p and 0 are real functions of T. It was shown that the

large T behaviour of p is given by,

2 qjH -t
p2 , 0i-2r (as T -- +oo).O'2r

It may be seen from the numerical results of section 5 that qi and 02r are both always

negative. This equation implies that the large T behaviour may be inferred from (6.2)

neglecting the dB,¾!t term. This equilibrium solution corresponds to letting C -+ 0 in

equation (6.1), wfIi,' corresponds to the disturbance size being decreased. Thus the

interval over which unsteady terms induce a contribution to the amplitude equation

is crucial. In this interval a small disturbance (h -- R-), develops smoothly into a

finite amplitude Tollmien-Schlichting wave. Only 'later' (that is for relatively large

time) does the amplitude tend towards the amplitude predicted by (6.1).

28



§7 Conclusions

We have shown that in theory a Rayleigh layer is unstable to Tollmien-Schlichting

waves. An Orr-Sommerfeld calculation is performed and it is found that beyond a

certain Reynolds number, disturbances with fixed spatial wavenumber comparable to

the displacement thickness are temporally unstable. As the Reynolds number increases

further the structure of the neutral modes can be described by a triple deck method,

and eigenrelations are calculated and used to determine the wave characteristics. A

multiple scales technique is used to determine the effect of the growth of the layer on

the w-aves' stabilities. In summary it is fomnd that this depends on v-hich quantity

is chosen to represent the waves intensity. A Stuart-Watson amplitude equation was

derived in the neighbourhood of the neutral time, and the waves were found to bifurcate

supercritically from the zero solution. An amplitude is found that represents a crucial

stage in the development of the wave, this pahse allows the wave to evolve smoothly

from its linear stage to its equilibrium amplitude.

Although this work in this paper represents fairly minor modifications to various

earlier papers; the methods are applied to an entirely different physical problem. It

will be of interest to determine whether the upper branch modes can also be compared

with the Orr-Sommerfeld calculation. The calculation will be solved using the methods

discussed in Bodonyi & Smith (1981), wherein the effect of non-parallelism on upper

branch Tollmien-Schlichting waves in a Blasius boundary layer is discussed. The upper

branch problem is far more complex, since the critical layer is distinct from the wall

layer. Within the context of this spatially homogeneous problem it will be interesting

to find what acoustic radiation may be generated by these waves, and whether the

waves on the upper branch or the lower branch of the neutral curve produce the most

sound. The noise can be calculated using methods similar to those discussed in Tam

& Morris (1980).
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Appendix

The double integral ar2 involved in the weakly nonlinear calculation occurring in equa-

tion (4.5), is given by

( (( +y2) LG(q)dq +LG( o))

_(0 + I2) Ai (ý0) - Ai" (ý0) i, o

(A.1)
where the function G(ý) is given by,

G(ý)= -LA-I "(a) "- Aii(q) dqAi + f Ai)q)d q
to to to

+ Ai(q)dqiL(())+ JAi(q))dqdq L(

oo 4

S-• A'i (q) dqL2 (F )+2--(q L (

to to to

1 L 1 9Ai
1 L2(F(q))dqAi() + L2 (F(q))dq

2T 2

40 to to

- A-2 ( Ai(ý)dqdý 02 H+ Ai (ý) H

(o 
oý

2•(82 + 72)2 f L 2 (F(ý))d - A*-L2 (F o
4o'Y(a) 4 (0 2) 2-4(2 +72)4 & fAi(q)dq+ 2. Ai' (A0)

and the form of F(ý) included in the integral o0(a) is given by,

F(ý) = -2 (AiA dqAi( (q- Ai (ý) d~d4 ,

to to to
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the function H(ý) is given by,

8O H qAi J f.(qddaAi-@3 -- A-1i Ai (q) dqdý 3 IfA q) -qd

toto to 40

+ a• (Ai (ý).fi(-)

where the operators L and L 2 are defined as,

020 Lo

02¢ 0L2 -5-C b- 2ýN

The terms c.t.A.3 occurring in equation (3.8), that is those due to the second order

basic flow terms, are given by

2 f 2 Oftoc.t.A3 - A 'f(•)-i~ (

where f(ý) as given in section 3.5.

The terms due to non-conventional analysis in equation (3.8), are

1 Bi( A-_ ", \ 1 1_A .,,OIQI
n.t. _ AB1 i' A 0 + -2ii o ASAi ,,Ai(2)

1 8A / 2 ,101 1 A(iv) (91 1 0? a2\i+ (-!-'Ail +fDAi"!A-½ z .. ,,, Ai 1 A- + .- 3Ai("0- 0 iA0 0 3 15 15 0

(A.2)
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